Схема подключения трехфазного электродвигателя к трехфазной сети

Содержание:

Как поменять направление вращения

Если поменять направление нужно только 1 раз, то это можно сделать еще на стадии переделки. Для этого достаточно поменять местами любые две обмотки статора. Той же цели достигает перекидывание ветки конденсаторов с нуля на фазу, или наоборот. Но если вам нужно часто реверсировать трехфазный переделанный мотор, необходим переключатель. Собрав электродвигатель по схеме ниже, вы освободите себя от смены намоток каждый раз, когда нужно задать обратное направление вращения вала.

В переделке трехфазного электрического двигателя под однофазную сеть своими руками нет ничего трудного. Наибольшую сложность составит только расчет емкости рабочего конденсатора и экспериментальный подбор емкости из подсчитанного диапазона для пускового накопителя. Но и это становится легко, если вы не потеряли технический паспорт, а под рукой есть калькулятор.

Что нужно знать о двигателе перед подключением

Трёхфазный электродвигатель бывает по способу работы двух типов:

  1. Синхронный имеет повышенные скорости работы, но требует для своего разгона дополнительных затрат энергии. Изначально он работает в асинхронном режиме, пока не достигает требуемых оборотов, и не переходит в синхронную стадию. Синхронные моторы позволяют постепенно снижать или наращивать обороты. Однако, они сложны в изготовлении, вследствие чего имеют большую себестоимость. Это обусловило их небольшое распространение, по сравнению с асинхронными вариантами трёхфазных электромоторов.
  2. Асинхронный электродвигатель не допускает регулировки оборотов в процессе работы. Максимальная скорость его вращения также несколько ниже. Но подобные моторы более просты по своей конструкции, не такие дорогие, и отличаются большей надёжностью и ремонтопригодностью. Благодаря этим преимуществам, они используются гораздо чаще, как в промышленных производствах, так и в быту.

Трёхфазные моторы, выпускаемые современной промышленностью, имеют различные эксплуатационно-технические характеристики. Вся необходимая информация указывается на корпусе устройства:

  • Тип – синхронный или асинхронный.
  • Напряжение и частота питающей сети.
  • Максимальная мощность мотора.
  • Число развиваемых оборотов за минуту.

Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:

  • Корпус, служащий основой для крепления остальных деталей.
  • Статор.
  • Ротор, отделённый от статора воздушным пространством.
  • Обмотка, состоящая из трёх проводников, располагающихся по окружности под углом 120о.
  • Шкив вала, служащий для передачи крутящего момента внешним рабочим механизмам.

Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт. Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три. На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Работа трехфазного электродвигателя в однофазном режиме: схемы подключения

При включении трехфазного электродвигателя в однофазную сеть возникает пульсирующее магнитное поле. Для старта двигателя нужен сдвиг фаз относительно друг друга не менее чем на 900. Для этого применяют резистивные, емкостные, индуктивные пусковые элементы, включаемые в цепь одной из обмоток. При этом схема трехфазного электродвигателя становится эквивалентной однофазной электрической машине.

В схеме с пусковым резистором сдвиг фаз достигается более медленным намагничиванием одной из обмоток. Такой способ имеет значительные недостатки: большие потери мощности на сопротивление и перегрев электродвигателя при длительной работе. Схемы с индуктивными пусковыми элементами также обладают недостатками.

На практике для включения трехфазных электрических машин в однофазную сеть пусковые резисторы и катушки практически не используют.

Самая распространенная схема – включение через конденсатор. Емкостные элементы гораздо компактнее резисторов, не обладают активным сопротивлением. К недостаткам конденсаторного пуска относят значительный нагрев двигателя при длительной работе и низкий пусковой момент.

Для оборудования, которое запускается под нагрузкой и предназначено для длительной работы, например бетономешалки, применяют схему с 2 конденсаторами. При пуске оба емкостных элемента включены цепь, после разгона двигателя пусковой конденсатор отключается. Это позволяет устранить недостатки схемы с конденсаторным сдвигом фаз.

Емкость рабочего конденсатора для схемы включения «звезда» определяется исходя из выражения: Cр=2800 хP/(√3хU²х η х cosϕ). Параметры емкостного элемента при соединении в «треугольник» – по формуле Cр=4800 х P/(√3 х U² х η х cosϕ).

Конденсатор можно выбрать из расчета 70 микрофарад на 1 киловатт мощности двигателя. Емкость пускового конденсатора рассчитывается как Cп=2,5 х Cр.

При выборе схемы подключения, нужно учесть параметры двигателя. Если на табличке указаны значения 380/220 В, для включения в сеть 220 В обмотки соединять нужно только «треугольником». Если указано значение только 380 В, нужно разобрать двигатель, найти точку соединения обмоток и вывести все выводы на клеммник.

Для подключения электродвигателей применяют металлобумажные и электролитические конденсаторы. Первые рассчитаны на длительную работу, хорошо выдерживают коммутационные перенапряжения. К недостаткам металлобумажных конденсаторов относится небольшая емкость. Для запуска электродвигателя необходимо параллельно подключить несколько элементов в одну конденсаторную батарею.

Электролитические конденсаторы компакты и обладают значительной емкостью

При выборе устройств необходимо обратить внимание на номинальное напряжение. Для электродвигателей в сети 220 В применяют элементы не менее чем на 400-450 В

При коммутациях возникают импульсные броски, при заниженном напряжении, емкостные элементы быстро выходят из строя. Целесообразно использовать специальные конденсаторы для электродвигателей.

Работа трехфазного двигателя от однофазной сети имеет ряд недостатков. Потери мощности составляют 30-40%, то есть мощность электрической машины в таком режиме равна 60-70% от номинального значения, указанного производителем. При этом также наблюдается повышенный шум при работе, избыточный нагрев обмоток.

Варианты подключения 3-х фазного двигателя к электросети

Ввиду того, что конструкция движка в таком варианте усложняется, чаще применяется электродвигатель, подключение которого обеспечивается переключением между этими схемами. Двигатель с магнитным пускателем Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. На третью обмотку включают напряжение.
Включение такого двигателя в сеть v приводит к снижению его номинальной мощности в з раза. Это можно легко заметить, проанализировав его конструкцию.
Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Если электрические и механические режимы соответствуют конструктивно заложенным нормам, асинхронный движок — это самый долгоживущий из всех электромоторов.
Если концы одной обмотки найдены — лампа загорается.
При размыкании контакта стрелка пойдет к минусу. Но будет значительное падение мощности и эффективности его работы.
Кстати на советских пускателях и контакторах были совмещенные блок-контакты, то есть один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть пары дополнительных контактов как раз для этих целей. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Но таких накопителей не найти в магазинах. При запуске мощного асинхронного двигателя от Вт или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к В через рабочий и пусковой конденсаторы.
Как подключить кнопку пуска трехфазного двигателя

https://youtube.com/watch?v=u87I1vK6ZHE

Читайте дополнительно: Оформление энергетического паспорта

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Подключение к трёхфазной сети

Принцип работы схемы: Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Российские моторы на три фазы подключаются по звезде.

В коллекторных движках аналогичные задачи решаются намного проще.

Его ёмкость должна быть в 2,5 — 3 раза больше ёмкости рабочего.

Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор. Для работы схемы необходимы 3 пускателя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.

Обычно его емкость Сп больше в раза по сравнению с Ср. Проверка переменным током Две любые обмотки включают параллельно концами к мультиметру. Работа по выводу недостающих концов требует определенного навыка.

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора Ср — рабочий конденсатор; Сп — пусковой конденсатор. В двигателе есть проводник с желто-зеленой изоляцией.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать

Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Подключение по схеме «звезда»

У каждой обмотки есть начало и конец. Перед тем, как подключить двигатель 380 на 220, нужно выяснить, где концы обмоток. Для соединения по схеме «звезда» достаточно установить перемычки таким образом, чтобы все концы были замкнуты. Три фазы нужно подключать к началам обмоток. При запуске двигателя от трехфазной сети желательно использовать именно эту схему, так как при работе не индуцируются высокие токи.

Но добиться высокой мощности вряд ли удастся, поэтому применяют на практике гибридные схемы. Запускают мотор с включенными обмотками по схеме «звезда», а при выходе на устоявшийся режим происходит переключение на «треугольник».

«Звезда»

При соединении обмоток звездой к началам обмоток присоединяют питающие провода (на схемах обозначены цветами), а концы обмоток соединяют между собой в одну точку

, при этом подключение нулевого проводника в точку соединения концов обмоток необязательно так как это симметричная нагрузка. В свою очередь, точка соединения концов обмоток также называется нейтралью.

Есть два варианта представления этого соединения на электрических схемах, как в наглядном виде, действительно напоминающем трёхлучевую звезду (А), так и в более классическом для схем представлении (Б). Вас не должно смущать это отличие, когда вы читаете схему.

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы

Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор

Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Как правильно подсоединить электродвигатель

От правильности включения обмоток электродвигателя зависит как ток потребления, так и направление вращения. Ток потребления вырастает, если двигатель, у которого на данное напряжение сети обмотки должны быть соединены «звездой», переключить на «треугольник». Такой режим работы является аварийным и приведет к выходу из строя.

Из теории трехфазного тока известно, что направление вращения электрической машины можно изменить, поменяв любые две фазы из трех местами. На этом основана схема реверсирования трехфазных асинхронных электродвигателей.

Важно! Схема реверсирования должна обеспечивать невозможность переключения фаз до момента остановки двигателя (прекращения подачи питания). В противном случае произойдет короткое замыкание сети

Как подключить с 3 или 6 проводами

В большинстве случаев соединение двигателя с питающей сетью производится при помощи трех проводов. Даже если на клеммную колодку выведено шесть проводов, что соответствует трем парам обмотки, то путем соединения в нужную схему для подключения к питанию используется три провода.

Для мощных устройств учитывается, что асинхронный двигатель в момент запуска потребляет в несколько раз больший ток, поэтому используется сложная схема запуска, в которой в момент пуска обмотки подключаются «звездой», а после того как ротор наберет необходимые минимальные обороты, обмотки переключаются в «треугольник».

Шестипроводная схема включения

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов 4х2 Входы Выход
Сторона сдвига Направо C D R Q0 Qn
Тип ввода Последовательно H Н H Qn-1
Тип вывода Параллельно B H B Qn-1
Тактовая частота 2,5MHz X H Q1 Qn не меняется
Рабочая температура -45÷+85 X X B H H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Включаемся в однофазную сеть

Итак, осталось только глубинно рассмотреть, как подключить контактор по выше указанным схемам.

Начать стоит с треугольника. Вот самая простая схема подключения:

На ней видно, что один провод от сети идет на конденсатор. Его можно припаять прямо к выходу. От этого же контакта провод идет на средний вход коробки подключения мотора.

Второй провод от сети идет на крайний левый контакт

Обратите внимание, что разницы нет, какой провод вести на конденсатор, а какой на двигатель, ведь в розетках переменное напряжение. Оставшийся выход на конденсаторе необходимо соединить с оставшимся входом на двигателе

Со звездой ситуация обстоит еще проще. Строится схема вот так:

Перед тем, как подключить конденсатор к электродвигателю 220в, лучше поставить хороший пакетник. «звезда» может отключать электричество, если двигатель сильно нагрузить.

Для начала нужно найти фазу и ноль – здесь это важно. Понадобится мультиметр, который необходимо включить в положение «переменное напряжение 220»

Теперь вставьте красный щуп в отверстие на розетке, а второй прислоните к стене или заземлительному контакту. Если показывает «220» – значит тот провод, которого касаются щуп, фазный. Если на экране «-220» — вы нащупали ноль.

Фаза идет в пакетник, где разделяется. Один проводок нужно пустить на Н1, а второй на блок конденсаторов. Ноль сразу идет на Н3. Конденсаторы через переключатель соединяются последовательно.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Подключение трехфазного двигателя к сети 220В

Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.

Схема подсоединения мотора 380 на 220

При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.

Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.

При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.

Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:

При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.

На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).

Подбор конденсаторов

Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:

Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.

Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.

Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:

Какой тип шагового двигателя у меня?

Если вручную покрутить ротор отключённого двигателя, то можно заметить, что он движется не плавно, а шагами. После того, как Вы покрутили ротор, замкните все провода двигателя и покрутите ротор повторно. Если ротор крутится также, значит у Вас реактивный двигатель. Если для вращения ротора требуется прикладывать больше усилий, значит у вас двигатель с постоянными магнитами или гибридный. Отличить двигатель с постоянными магнитами от гибридного можно подсчитав количество шагов в одном обороте. Для этого не обязательно считать все шаги, достаточно примерно понять, их меньше 50 или больше. Если меньше, значит у Вас двигатель с постоянными магнитами, а если больше, значит у Вас гибридный двигатель.

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь!

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector