Модуль юнга е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности

Содержание:

Определение качества

Если говорить об идеальном времени для проведения бетонных работ на открытом воздухе, то это, безусловно, теплый сезон. В такой период, как правило, преобладает положительная температура, нет большого количества осадков, стабильное солнце, благодаря прогреванию которого текстура материала быстро твердеет. К сожалению, не всегда есть возможность работать при таких условиях, чаще всего строительство осуществляется при низких температурах.

В процессе бетонирования под морозом появляется основная проблема, суть которой заключается в наборе прочности бетона и начала кристаллизации воды в нем. К основным методам ее решения относят создание теплоизоляции опалубки или специального подогрева уложенной смеси.

Выбор решения зависит от того, насколько быстро форма с вложенным материалом будет застывать. Определить это можно с помощью специальных формул и отношением площади к охлаждаемой поверхности и ее объему. Модуль поверхности бетона помогает решить ряд вопросов и определить как быстро, контактируя с холодным воздухом, данная площадь сможет затвердеть.

При вычислении модуля в зимнее время надо учитывать тот фактор, что процесс набора бетоном прочности прекращается при охлаждении температуры до 0 градусов. Охлаждаемыми считаются только те части поверхности, которые контактируют с более холодным воздухом.

Мастера советуют применять дополнительные нагревающие элементы, которые помогут быстрее решить проблему с затвердеванием уложенного монолита.

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Способы определения и контроля показателей прочности металлов

Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними. Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда. С повышением прочностных характеристик совершенствовались инструменты и способы производства.

Технологическая карта

Это основной документ, в котором имеются сведения об укладке бетона, его технические характеристики, перечисление людей, принимающих участие в кладке. Еще в нем указан температурный режим, при котором затвердевание будет максимальным. Технологическая карта считается важным документом для инженерно-технических работников, строительных и проектных организаций.

Также она может использоваться производителями работ, мастерами и бригадиром в процессе кладки материалов. Обязательным является указание авторства технологической карты.

Она состоит из нескольких категорий. К основным относятся: область применения, организация и технология выполнения работ с указанием требования к качеству, потребность в материально-технических ресурсах, а также перечисление необходимых элементов, которые будут использоваться при кладке материала.

Обязательным элементом технологической карты является наличие решения по технике безопасности, а также технико-экономические показатели. Хотя этот документ составляется под конкретную область, здесь также считаются обязательными примеры определения модуля поверхности, пользования технологической картой и определения прочности бетона.

Технологическая карта является документом, по которому будет определяться уровень практичности и качественности бетона. Обязательным ее элементом считается расчет модуля поверхности бетона.

Способы определения модуля упругости

Ультразвуковой способ контроля модуля упругости бетона.

Норматив упругости конструкции выясняется в ходе экспериментальных исследований на пробах по бетону Данное значение принято обозначать буквой «Е». Однако у него имеется и другое обозначение – «модуль Юнга». Профессионалы разделяют показатель упругости на подвиды: начальный и приведенный.

Необходимо заметить, что обычному малоопытному потребителю непростые формулы и примеры вычетов, которые делаются по данному показателю, никоим образом не пригодятся в жизни. В подобных тонкостях и нюансах может разобраться лишь человек опытный либо владеющий специальным образованием.

Показатель упругости возможно выяснить во время проведения отдельных проб на способность противостоять сжатию либо растяжению. Стоит заметить, что материал, не содержащий внутри армировочный каркас к такому явлению как растяжение, не подвластен. По результатам проведенных экспериментов, происходит построение графика, в котором указана зависимость между прикладываемым воздействием и разрушением изделия.

Начальный показатель, характеризующийся упругостью бетона, выясняется не так легко, как хотелось бы. Но его примерное значение можно выяснить косвенным методом. Довольно часто секущая полоса к кривой, обозначающая зависимость воздействия от разрушения, расположена параллельно относительно касательной линии. Также правильным будет определение того, что показатель упругости материала повышается прямо пропорционально значению его крепости. Но все-таки это является точным лишь для главной части графика. Также значение сильно подвластно условиям и месту эксперимента.

Виды раствора

Все подобные материалы подразделяются на несколько видов. Самое интересное заключается в том, что даже не все профессиональные строители знают, что существует несколько разновидностей бетона:

  1. Тяжелые. Такой вид имеет маркировку М100, М150, М200 и т. д. В состав смеси входят плотные наполнители известняк и гранит. Тяжелый бетон является высокопрочным. Он быстро затвердевает, поэтому его главное предназначение — сборные железобетонные конструкции.
  2. Легкие. В такой бетон при изготовлении добавляют легкие пористые наполнители, такие как керамзит, пемза, вспученный шлак и другие. Благодаря такому составу материал становится намного легче, поэтому его используют для возведения несущих стен и других ограждающих сооружений.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих — повышение предела прочности (селектрон).

Понятие модуля упругости

Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.

Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.

С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.

В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.

В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.

Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.

Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:

где E — модуль упругости (Па);

εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l).

Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.

График зависимости деформаций от напряжений при постепенном загружении

Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:

где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).

Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10 -3 .

Модуль деформаций бетона

Начальный модуль упругости бетона при сжатии соответствует лишь упругим деформациям, возникающим при мгновенном загружении или при напряжениях . Он определяется в соот­ветствии с законом Гука как тангенс угла наклона прямой упругих деформаций к оси абсцисс (рис. 1.11), т.е.

где р = 1 МПа — масштабно-размерный коэффициент.

Обычно определяется из специальных опытов на призмах при низком уровне напряжений (), когда бетон можно рассматривать как упругий материал.

При действии на бетон нагрузки, при которой , хотя бы в течение нескольких минут, в связи с развитием пластических деформаций (включая ползучесть) модуль полных деформаций бе­тона становится величиной переменной.

Для расчёта железобетонных конструкций пользуются сред­ним модулем деформаций или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей, проведённой через начало координат и точку на кривой с заданным на­пряжением, к оси абсцисс, т.е.

Начальный модуль упругости бетона при растяжении по аб­солютной величине принимается равным , то есть , а

где vt = 0,15 — значение коэффициента упругопластичности бетона при растяжении в момент, предшествующий разрушению.

Значения модуля сдвига бетона G принимают по установленной в теории упругости зависимости

Подставив в неё начальный коэффициент поперечной деформации бетона ν=0,2, получим .

ЛЕКЦИЯ 3

Арматура для железобетонных конструкций

  1. Назначение арматуры и требования к ней

2. Виды арматуры

3. Физико-механические свойства арматурных сталей

4. Классификация арматуры по основным характери­стикам. Сортамент арматуры

5. Сварные арматурные изделия

6. Соединения арматуры

1. Назначение арматуры и требования к ней

Под арматурой понимают отдельные стержни или целые каркасы, которые располагаются в массе бетона в соответствии со статиче­ской схемой работы конструкции.

Арматура в железобетонных конструкциях используется пре­имущественно для восприятия растягивающих усилий. Но иногда арматуру применяют и для усиления сжатого бетона (например, в колоннах), а также для восприятия температурных и усадочных на­пряжений.

Арматура для железобетонных конструкций должна удовлетво­рять следующим требованиям:

под нагрузкой надёжно работать совместно с бетоном (за счёт сцепления) на всех стадиях службы конструкции;

использоваться до предела текучести или предела прочности при исчерпании конструкцией несущей способности.

2. Виды арматуры

Многообразие видов железобетонных конструкций определяет необ­ходимость применения широкой номенклатуры арматурных сталей.

Для изготовления арматуры используют конструкционные стали обычно с содержанием углерода не более 0,65%, так как стали с более высоким содержанием углерода плохо свариваются.

Арматура классифицируется по функциональному назначению и способу изготовления по четырём признакам.

1. По технологии изготовления арматуру делят на: стержневую го­рячекатаную, термомеханически упрочненную и механически упрочненную в холодном состоянии (холоднодеформированную).

2. По форме наружной поверхности арматура бывает гладкая и пе­риодического профиля.

3. По способу применения: арматура, которую укладывают в кон­струкцию без предварительного напряжения, называется ненапрягаемой, арматура, которую при изготовлении конструкции предва­рительно натягивают — напрягаемой.

4. Арматура, устанавливаемая в железобетонных конструкциях по расчёту, называется рабочей. Площадь её поперечного сечения опре­деляется расчётом элементов конструкций на различные нагрузки и воздействия. Её главное назначение — восприятие растягивающих усилий в сечениях. Поэтому она располагается в растянутой зоне вдоль линии действия этих усилий, т. е. перпендикулярно к воз­можному направлению трещин.

Арматура, устанавливаемая по конструктивным или технологи­ческим соображениям, называется монтажной или распределитель­ной (в плитах). Она обеспечивает проектное положение рабочей ар­матуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, мон­тажная арматура может воспринимать обычно не учитываемые рас­чётом усилия от усадки бетона, изменения температуры конструк­ции и т. п. Она может также выполнять роль рабочей при транспор­тировании и монтаже конструкции.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

виды, классификация. От чего зависит

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.

Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60 Тяжёлые Естественный цикл затвердевания — — — 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40 Тепловая обработка при атмосферном давлении — — — — 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36 Автоклавная обработка — — — — 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30 Мелкозернистые А-группа (естественное отвердение) — — — — 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5 — — — — Тепловая обработка при атмосферном давлении — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5 — — — — Б-группа (естественное отвердение) — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 — — — — — — Теплообработка при автоклавном давлении — — — — 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5 В-группа автоклавного отвердения — — — — — — — — — 16,5 18 19,5 21 21 22 23 24 24,5 25 Лёгкие и горизонтальные — средняя плотность D 800 — — — 4 4,5 5 5,5 — — — — — — — — — — — — 1000 — — — 5 5,5 6,3 7,2 8 8,4 — — — — — — — — — — 1200 — — — 6 6,7 7,6 8,7 9,5 10 10,5 — — — — — — — — — 1400 — — — 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5 — — — — — — 1600 — — — — 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18 — — — — — 1800 — — — — — 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21 — — — — 2000 — — — — — — 14,5 16 17 18 19,5 21 22 23 23,5 — — — — Ячеистые, автоклавное твердение, плотность D 500 1,1 1,4 — — — — — — — — — — — — — — — — — 600 1,4 1,7 1,8 2,1 — — — — — — — — — — — — — — — 700 — 1,9 2,2 2,5 2,9 — — — — — — — — — — — — — — 800 — — — 2,9 3,4 4 — — — — — — — — — — — — — 900 — — — — 3,8 4,5 5,5 — — — — — — — — — — — — 1000 — — — — — 6 7 — — — — — — — — — — — — 1100 — — — — — 6,8 7,9 8,3 8,6 — — — — — — — — — — 1200 — — — — — — 8,4 8,8 9,3 — — — — — — — — — — Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация

При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция

Модуль упругости — от чего он зависит

Бетонные арки. Фото

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Автоклавная обработка

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (

Определение и формула коэффициента Пуассона

Обратимся к рассмотрению деформации твердого тела. В рассматриваемом процессе происходит изменение размеров, объема и часто формы тела. Так, относительное продольное растяжение (сжатие) объекта происходит при его относительном поперечном сужении (расширении). При этом продольная деформация определена формулой:

где — длина образца до деформации, — изменение длины при нагрузке.

Однако, при растяжении (сжатии) происходит не только изменение длины образца, но и при этом меняются поперечные размеры тела. Деформация в поперечном направлении характеризуется величиной относительного поперечного сужения (расширения):

где — диаметр цилиндрической части образца до деформации (поперечный размер образца).

ОПРЕДЕЛЕНИЕ

Коэффициентом Пуассона называют абсолютную величину, равную частному относительного поперечного сужения (расширения) () к относительному продольному удлинению (сжатию) (). Обозначают коэффициент Пуассона обычно буквами: , . Встречаются и другие обозначения. Математически определение коэффициента Пуассона выглядит как:

Эмпирически получено, что при упругих деформациях выполняется равенство:

Модуль упругости бетона

Одной из важнейших характеристик бетона является модуль его упругости. Под упругостью понимают способность материала к обратимой деформации после воздействия на него механических сил. Именно такие деформации и называют модулем упругости бетона. В отличие от ряда других материалов, упругость бетона является достаточно сложной функцией. Реакция материала на деформирующие нагрузки или кратковременные напряжения напоминает реакцию пружины. Модуль упругости возрастает пропорционально с увеличением прочности бетона. Так же он зависит и от пористости материла – чем она выше, тем ниже данный показатель. Так, разница модуля упругости у тяжелых бетонов и у ячеистых будет отличаться примерно в 2-2,5 раза. Таким образом, модуль упругости бетона напрямую зависит от его структуры. Следствием данного вывода является тот факт, что значение модуля упругости связано не только с качеством исходных материалов, но и с технологией его производства. Поэтому в нормативной документации всегда четко прописываются значения модулей для каждого класса бетона.

Модуль упругости бетона рассчитывается в двух конфигурациях – как динамический и статический. Динамический модуль упругости определяется в процессе колебания опытного образца и его значение является более высоким, чем у статического. Статический модуль упругости позволяет дополнительно определить и ползучесть бетона, которая характеризует динамику появления деформация при постоянных нагрузках.

При проведении исследований исходят из посылки тождества модулей упругости бетона на растяжение и на сжатие. Однако в тех случаях, когда напряжение превышает 0,2 предела прочности бетона, начинают наблюдаться остаточные деформации. Тогда в местах сцепления заполнителей с цементом начинают образовываться микротрещины, которые с течением времени увеличиваются и приводят к искрашиванию или разрушению цементного камня.

Суть испытания заключается в подвергании образца постоянной непрерывно возрастающей нагрузке до окончательного его разрушения. Для этого применяются нагружающие установки. После этого составляется диаграмма, которая раскрывает зависимость между показателями нагрузки и деформации. По окончании работы со всеми образцами модуль упругости рассчитывается как среднее арифметическое показателей всех образцов, задействованных в ходе эксперимента.

Факторы, влияющие на модуль упругости бетона

Значение модуля упругости может существенно отличаться. На него влияет множество факторов. Чтобы получить желаемый результат, стоит с ними познакомиться заранее.

ФОТО: static.tildacdn.comЗначение зависит от многих факторов

Качество и объёмное содержание заполнителей

Бетон представляет собой смесь, состоящую из некоторого количества цемента и заполнителей. Качество и концентрация последних оказывают непосредственное влияние на значение модуля упругости. Если структура является неоднородной, вероятность возникновения сложного напряжённого состояния существенно возрастает. Основная нагрузка приходится на жёсткие частицы. Зоны с пустотами и порами испытывают поперечное растяжение.

ФОТО: house-keys.ruСоотношение компонентов может отличаться

Класс бетона

Класс бетона оказывает непосредственное влияние на модель упругости. Чем выше класс, тем большей прочностью на сжатие и плотностью будет обладать состав и будет лучше сопротивляться воздействующей нагрузке. Самое высокое значение – у бетона В60 –  численно равно 39,5 МПа×10-3. Наименьшее значение у В10 и соответствует 19 МПа×10-3.

ФОТО: cemmix.ruКласс бетона – важный критерий

Температура воздуха и влажность среды

При повышении температуры деформация в бетоне увеличивается, а упругие свойства снижаются. Это способствует повышению внутренней энергии смеси, а также линейному расширению материала, траекторий движения молекул и увеличению пластичности.

ФОТО: static.tildacdn.comТемпература определяет скорость набора прочности и количество деформаций

Влажность влияет на упругость материала. В расчётах используется коэффициент ползучести. Чем выше процентное содержание водяного пара, тем ниже будут пластические деформации.

ФОТО: wallpapertag.comУровень влажности бетона влияет на пластичность

Время воздействия нагрузки и условия твердения смеси

Продолжительность действия нагрузки на бетонную конструкцию также влияет на модуль упругости. Если нагружение осуществляется, мгновенно деформация конструкции увеличивается пропорционально приложенным внешним силам. Длительное напряжение приводит к уменьшению величины модуля. Зависимость носит нелинейный характер. Пластическая и упругая деформация складываются.

ФОТО: static.tildacdn.comХарактер прикладываемой нагрузки может отличаться

Условия, в которых бетон набирает свою прочность, могут отличаться. В естественных условиях значение всегда выше. Если материал обрабатывается в автоклавной установке либо осуществляется пропаривание в условия атмосферных давлений, значение несколько снизится. Причиной этого является образование большого числа пустот и пор благодаря неравномерному температурному расширению объёма, понижению качества гидратации зёрен цемента.

ФОТО: beton-house.comТвердение в естественных условиях предпочтительней

Возраст бетона и армирование конструкции

Для набора прочности свежезалитому бетону достаточно четырёх недель. По истечении указанного периода смесь будет обладать упругими свойствами и достаточной пластичностью. Максимальная твёрдость будет достигнута только через 200-250 дней. Именно в это время модуль упругости достигнет максимального значения, соответствующего марочной прочности.

ФОТО: cemmix.ruДля набора прочности требуется время

Для того чтобы монтируемая конструкция прослужила подольше, её обязательно армируют. В качестве армирующих элементов берётся сетка либо каркас, для изготовления которого использовалась арматура, относящаяся к классам АI, AIII, А500С, Ат800, древесина и композиты. Все эти элементы в процессе эксплуатации воспринимают растягивающие и сжимающие нагрузки, воздействующие на бутон.

Благодаря армированию удается повысить упругость и прочностные характеристики конструкции. Уменьшается вероятность образования трещин деформационного и усадочного типа.

ФОТО: a-plus-enterprises.comАрмирование повышает упругость

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector